Monte Carlo data association for multiple target tracking

نویسندگان

  • Rickard Karlsson
  • Fredrik Gustafsson
چکیده

The data association problem occurs for multiple target tracking applications. Since non-linear and non-Gaussian estimation problems are solved approximately in an optimal way using recursive Monte Carlo methods or particle filters, the association step will be crucial for the overall performance. We introduce a Bayesian data association method based on the particle filter idea and the joint probabilistic data association (JPDA) hypothesis calculations. A comparison with classical EKF based data association methods such as the nearest neighbor (NN) method and the JPDA method is made. The NN association method is also applied to the particle filter method. Multiple target tracking using particle filter will increase the computational burden, therefore a control structure for the number of samples needed is proposed. A radar target tracking application is used in a simulation study for evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking

We propose a new Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets in presence of clutter and false alarm measurements. The advantage of the new approach is that Rao-Blackwellization allows the estimation algorithm to be partitioned into single target tracking and data association sub-problems, where the single target tracking sub-problem can be solved by Kalman filt...

متن کامل

Markov Chain Monte Carlo Data Association for Multiple-Target Tracking

This paper presents Markov chain Monte Carlo data association (MCMCDA) for solving data association problems arising in multiple-target tracking in a cluttered environment. When the number of targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association (JPDA). Although the exact computation of association probabilities in JPDA is NP-hard, we prove that t...

متن کامل

Multiple target tracking using Sequential Monte Carlo Methods and statistical data association

This paper presents two approaches for the problem of Multiple Target Tracking (MTT) and specifically people tracking. Both filters are based on Sequential Monte Carlo Methods (SMCM) and Joint Probability Data Association (JPDA). The filters have been implemented and tested on real data from a laser measurement system. Experiments show that both approaches are able to track multiple moving pers...

متن کامل

Combining particle MCMC with Rao-Blackwellized Monte Carlo data association for parameter estimation in multiple target tracking

We consider state and parameter estimation in multiple target tracking problems with data association uncertainties and unknown number of targets. We show how the problem can be recast into a conditionally linear Gaussian state-space model with unknown parameters and present an algorithm for computationally efficient inference on the resulting model. The proposed algorithm is based on combining...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001